Part Number Hot Search : 
ICL3237E 3KP15 EZ240D12 ST721005 TC74VCX 80XF6TR 1N539 2SAA1
Product Description
Full Text Search
 

To Download 10-FZ12NMA080SH-M269F Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  10-FZ12NMA080SH-M269F datasheet flowmmnpc0 1200v/80a & 600v/50a mixed voltage component topology neutral point clamped inverter reactive power capability low inductance layout solar inverter ups 10-FZ12NMA080SH-M269F tj=25c, unless otherwise specified parameter symbol value unit half bridge igbt t h =80c 66 t c =8 0c 84 t h =8 0c 15 8 t c = 80c 240 t sc t j 1 50c 6 s v c c v ge =15v 360 v neutral point fwd t h =80c 26 t c =8 0c 36 i fsm 3 00 a i 2 t 370 a 2 s t h = 80c 44 t c =8 0c 66 t j = t j m ax t j =t j max t p limited by t j max t j =t j max t j =25c ma x imum junction temperature 1200 20 w a collector-emitter break down voltage repetitive peak collector current dc collector current v ce i cpulse i c 600 150 c v w power dissipation per diode features flow0 12mm housing target applications schematic types maximum ratings condition a v c v v rrm maximum junction temperature pow er dissipation per igbt v ge t j max p tot short circuit ratings pea k repetitive reverse voltage gate-emitter peak voltage dc forward current a t j =t j max t p limited by t j max a i f surge forward current i2t -value t p =8,3ms , sin 180 i frm 320 60 17 5 t c =25c p tot t j max re p etitive peak forward current copyright by vincotech 1 revision: 4
10-FZ12NMA080SH-M269F datasheet tj=25c, unless otherwise specified parameter symbol value unit maximum ratings condition neutral point igbt t h =80c 36 t c =8 0c 46 t h =8 0c 56 t c = 8 0c 85 t sc t j 150c 6 s v c c v ge =15v 360 v half bridge fwd t j =25c t h =80c 25 t c =8 0c 35 i fsm 3 25 a i 2 t 440 a 2 s t h = 80c 45 t c =8 0c 68 thermal properties insulation properties v is t=2s dc voltage 4000 v min 12,7 mm min 12,7 mm 175 t p limited by t j max v a v c w a g a te-emitter peak voltage maximum junction temperature short circuit ratings power dissipation per igbt repetitive peak collector current dc collector current collector-emitter break down voltage w a v a v rrm v ge t j =t j max t j max p tot t j =t j max t j =t j max dc forward current i f repetitive peak forward current i frm 20khz square wave t j =t j max i c peak repetitive reverse voltage c ma ximum junction temperature t j max 15 0 c storage temperature t stg -40+125 c - 40+(tjmax - 25) clearance insulation voltage creepage distance t op operation temperature under switching condition 70 12 00 600 150 20 v ce i cpuls power dissipation per diode p tot surge forward current i2 t -value t p =8,3ms , sin 180 t c =25c copyright by vincotech 2 revision: 4
10-FZ12NMA080SH-M269F datasheet par ameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max tj=25c 5 5,80 6,5 tj=150c tj=25c 1 2,10 2,5 tj=150c 2,43 tj=25c 500 tj=150c tj=25c 1,2 tj=150c tj=25c 125 tj=150c 126 tj=25c 20 tj=150c 23 tj=25c 219 tj=150c 282 tj=25c 43 tj=150c 73 tj=25c 0,47 tj=150c 0,70 tj=25c 0,98 tj=150c 1,65 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 0,60 k /w tj=25c 1 2,46 2,8 tj=125c 1,86 tj=25c 31 tj=125c 43 tj=25c 18 tj=125c 38 tj=25c 0,30 tj=125c 0,95 di(rec)max tj=25c 7783 /dt tj=125c 4120 tj=25c 0,02 tj=125c 0,12 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 1,61 k /w tj=25c tj=25c v 350 40 40 40 30 350 960 15 15 15 0 c ies q rr t rr vce=vge f=1mhz rgoff=8 i ges t f e on e off t d(on) rgon=8 q gate t r t d(off) erec c oss i rrm c rss v f peak reverse recovery current reverse transfer capacitance diode forward voltage gate charge reverse recovery time reverse recovered energy peak rate of fall of recovery current v ge(th) v ce(sat) i ces r gint input capacitance output capacitance turn-off energy loss per pulse collector-emitter saturation voltage fall time turn-off delay time turn-on delay time rise time value con d itions characteristic values 130 c m w s a/s integrated gate resistor half bridge igbt gate emitter threshold voltage col l ector-emitter cut-off current incl. diode gate-emitter leakage current 15 1200 0 100 0,002 0 rgon=8 20 turn -on energy loss per pulse reverse recovered charge neutral point fwd 25 466 0 v u a mws nc pf ns a v 370 ua n one ns 300 copyright by vincotech 3 revision: 4
10-FZ12NMA080SH-M269F datasheet par ameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max val ue cond itions characteristic values tj=25c 5 5,8 6,5 tj=125c tj=25c 1,1 1,54 2 tj=125c 1,75 tj=25c 100 tj=125c tj=25c 650 tj=125c tj=25c 99 tj=125c 102 tj=25c 10 tj=125c 13 tj=25c 183 tj=125c 206 tj=25c 80 tj=125c 99 tj=25c 0,49 tj=125c 0,72 tj=25c 1,16 tj=125c 1,50 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 1,30 k /w tj=25c 1,5 2,23 3,4 tj=125c 1,91 tj=25c 100 tj=125c tj=25c 64 tj=125c 79 tj=25c 29 tj=125c 172 tj=25c 2,7 tj=125c 6,1 di(rec)max tj=25c 8246 /dt tj=125c 4626 tj=25c 0,74 tj=125c 1,79 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 1,55 k /w b vincotech ntc reference 3996 k 3950 k b-value b(25/100) tol. 3% t=25c t=25c b-value b(25/50) tol. 3% a ns a/ s a mws c v % 22000 t=25c 2 5 -5 93 t j =25c 50 0,0008 turn-off energy loss per pulse q gate e off turn-on energy loss per pulse neutral point igbt peak reverse recovery current reve rse recovered charge gate-emitter leakage current gate emitter threshold voltage gate charge input capacitance output capacitance fall time turn-off delay time collector-emitter saturation voltage collector-emitter cut-off incl diode turn-on delay time rise time integrated gate resistor i ces v ge(th) v ce(sat) half bridge fwd reverse transfer capacitance f=1m hz c rss c oss c ies 480 mw/k ns mws 0 0 pf 41 20 1 5 nc 50 tj=25c p mw 200 rated resistance power dissipation constant deviation of r100 power dissipation r/r r100=1486 r t f e on t d(off) t r i ges i rrm rgoff=8 rgon=8 t d(on) r gint 350 15 v ce =v ge 15 15 0 ua na v v reverse recovery energy t rr q rr e rec reverse recovery time peak rate of fall of recovery current thermistor diode forward voltage rev e rse leakage current v f i r rgon=8 41 30 600 1 200 350 25 t=25c t=25c t=100c 200 3140 310 none copyright by vincotech 4 revision: 4
10-FZ12NMA080SH-M269F datasheet figure 1 igbt figure 2 igbt typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 25 0 s t p = 250 s t j = 25 c t j = 125 c v ge from 6 v to 16 v in steps of 1 v v ge from 6 v to 16 v in steps of 1 v figure 3 igbt fi gure 4 fred typical transfer characteristics typic al diode forward current as i c = f(v ge ) a f unction of forward voltage i f = f(v f ) at at t p = 25 0 s t p = 250 s v c e = 10 v b uck typical output characteristics hal f bridge igbt and neutral point fred 0 20 40 60 80 100 120 0 1 2 3 4 5 v ce (v) i c (a) 0 15 30 45 60 75 0 2 4 6 8 10 12 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 20 40 60 80 100 0 0,8 1,6 2,4 3,2 4 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 20 40 60 80 100 120 0 1 2 3 4 5 v ce (v) i c (a) copyright by vincotech 5 revision: 4
10-FZ12NMA080SH-M269F datasheet figure 5 igbt figure 6 igbt typical switching energy losses typic al switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) wit h an inductive load at with an inductive load at t j = 25 / 125 c t j = 25/ 125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 2 i c = 40 a r g off = 2 figure 7 fred fi gure 8 fred typical reverse recovery energy loss typic al reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) wit h an inductive load at with an inductive load at t j = 25 / 125 c t j = 25/ 125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 2 i c = 40 a b uck half bridge igbt a n d neutral point fred e on high t e off high t e on low t e off low t 0 0,5 1 1 ,5 2 2,5 3 0 20 40 60 80 i c (a) e (mws) e off high t e on high t e on low t e off low t 0 0,5 1 1,5 2 2,5 3 0 8 16 24 32 40 r g (w) e (mws) e rec high t e rec low t 0 0,0 5 0,1 0,15 0,2 0,25 0 20 40 60 80 i c (a) e (mws) e rec high t e rec low t 0 0,0 4 0,08 0,12 0,16 0,2 0 8 16 24 32 40 r g (w) e (mws) copyright by vincotech 6 revision: 4
10-FZ12NMA080SH-M269F datasheet figure 9 igbt figure 10 igbt typical switching times as a typic al switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) wit h an inductive load at with an inductive load at t j = 12 5 c t j = 125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 2 i c = 40 a r g off = 2 figure 11 fred fi gure 12 fred typical reverse recovery time as a typic al reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(ic) t rr = f(r gon ) at at t j = 25 / 125 c t j = 25/ 125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 40 a r g on = 2 v ge = 15 v half bridge igbt and neutral point fred buck t doff t f t don t r 0,00 0, 0 1 0,10 1,00 0 20 40 60 80 i c (a) t (ms) t rr high t t rr low t 0 0,0 2 0,04 0,06 0,08 0,1 0,12 0 8 16 24 32 40 r gon (w) t rr (ms) t doff t f t don t r 0,00 0, 0 1 0,10 1,00 0 8 16 24 32 40 r g (w) t (ms) t rr high t t rr low t 0 0,0 1 0,02 0,03 0,04 0 20 40 60 80 i c (a) t rr (ms) copyright by vincotech 7 revision: 4
10-FZ12NMA080SH-M269F datasheet figure 13 fred figure 14 fred typical reverse recovery charge as a typic al reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c ) q rr = f(r gon ) at at a t t j = 25 / 125 c t j = 25/ 125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 40 a r g on = 2 v ge = 15 v figure 15 fred fi gure 16 fred typical reverse recovery current as a typic al reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c ) i rrm = f(r gon ) at at t j = 25 / 125 c t j = 25/ 125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 40 a r g on = 2 v ge = 15 v half bridge igbt and neutral point fred buck i rrm high t i rrm low t 0 15 30 4 5 60 75 0 8 16 24 32 40 r gon (w) i rrm (a) q rr high t q rr low t 0 0,2 0,4 0,6 0,8 1 1,2 0 8 16 24 32 40 r g on ( w ) q rr (mc) i rrm high t i rrm low t 0 10 20 3 0 40 50 60 70 80 0 20 40 60 80 i c (a) i rrm (a) q rr high t q rr low t 0,00 0, 3 0 0,60 0,90 1,20 1,50 0 20 40 60 80 i c (a) q rr (mc) copyright by vincotech 8 revision: 4
10-FZ12NMA080SH-M269F datasheet figure 17 fred figure 18 fred typical rate of fall of forward typic al rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(ic) di 0 /d t,di rec /dt = f(r gon ) at at t j = 25 / 125 c t j = 25/ 125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 40 a r g on = 2 v ge = 15 v figure 19 igbt fi gure 20 fred igbt transient thermal impedance fred transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at at d = t p / t d = t p / t r thjh = 0,6 0 k/w r thjh = 1,6 1 k/w igbt thermal model values fred thermal model values r (c/w) tau (s) r (c/w) tau (s) 0,10 1,7e+00 0,06 9,8e+00 0,28 2,4e-01 0,30 1,1e+00 0,16 6,7e-02 0,80 1,8e-01 0,04 8,5e-03 0,28 3,3e-02 0,02 5,6e-04 0,11 5,6e-03 0,07 3,8e-04 half bridge igbt and neutral point fred buck t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di 0 /dt high t di rec /dt high t di 0 /dt low t di rec /dt low t 0 300 0 6000 9000 12000 15000 18000 0 8 16 24 32 40 r gon (w) di rec / dt (a/ms) di 0 /dt high t di rec /dt high t di o /dt low t 0 200 0 4000 6000 8000 10000 0 20 40 60 80 i c (a) di rec / dt (a/ms) copyright by vincotech 9 revision: 4
10-FZ12NMA080SH-M269F datasheet figure 21 igbt figure 22 igbt power dissipation as a colle ctor current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 17 5 c t j = 175 c v ge = 15 v fi gure 23 fred fi gure 24 fred power dissipation as a forwa rd current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 15 0 c t j = 150 c buck half bridge igbt a n d neutral point fred 0 50 100 150 200 250 300 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 60 70 80 90 100 0 50 100 150 200 t h ( o c) i c (a) 0 20 40 60 80 100 120 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 0 50 100 150 200 t h ( o c) i f (a) copyright by vincotech 10 revision: 4
10-FZ12NMA080SH-M269F datasheet figure 25 igbt figure 26 igbt safe operating area as a function gate voltage vs gate charge of collector-emitter voltage i c = f(v ce ) v ge = f(q g ) at at d = single pulse i c = 40 a th = 80 oc v ge = 15 v t j = t jmax oc buck half bridge igbt a n d neutral point fred v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 100us 1ms 10m 100m dc 10 0 10 3 0 2 4 6 8 10 12 14 16 0 50 100 150 200 250 300 350 400 q g (nc) v ge (v) 240v 960v copyright by vincotech 11 revision: 4
10-FZ12NMA080SH-M269F datasheet figure 1 igbt figure 2 igbt typical output characteristics typic al output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 25 0 s t p = 250 s t j = 25 c t j = 125 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 igbt fi gure 4 fred typical transfer characteristics typic al diode forward current as i c = f(v ge ) a f unction of forward voltage i f = f(v f ) at at t p = 25 0 s t p = 250 s v c e = 10 v neutral point igbt and half bridge fred boost 0 20 40 60 80 100 120 0 1 2 3 4 5 v ce (v) i c (a) 0 5 10 15 20 25 30 35 40 0 2 4 6 8 10 12 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 20 40 60 80 100 0 0,8 1,6 2,4 3,2 4 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 20 40 60 80 100 120 0 1 2 3 4 5 v ce (v) i c (a) copyright by vincotech 12 revision: 4
10-FZ12NMA080SH-M269F datasheet figure 5 igbt figure 6 igbt typical switching energy losses typic al switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) wit h an inductive load at with an inductive load at t j = 25 / 125 c t j = 25/ 125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 8 i c = 41 a r g off = 8 figure 7 igbt fi gure 8 igbt typical reverse recovery energy loss typic al reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) wit h an inductive load at with an inductive load at t j = 25 / 125 c t j = 25/ 125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 8 i c = 41 a neutral point igbt and half bridge fred boost e rec high t e rec low t 0 0,5 1 1 ,5 2 2,5 0 20 40 60 80 i c (a) e (mws) e rec high t e rec low t 0 0,5 1 1 ,5 2 2,5 0 8 16 24 32 40 r g ( w ww w ) e (mws) e off high t e on high t e on low t e off low t 0 0, 5 1 1 ,5 2 2,5 0 20 40 60 80 i c (a) e (mws) e off high t e on high t e on low t e off low t 0 0,5 1 1 ,5 2 2,5 0 8 16 24 32 40 r g ( w ww w ) e (mws) copyright by vincotech 13 revision: 4
10-FZ12NMA080SH-M269F datasheet figure 9 igbt figure 10 igbt typical switching times as a typic al switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) wit h an inductive load at with an inductive load at t j = 12 5 c t j = 125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 8 i c = 41 a r g off = 8 figure 11 fred fi gure 12 fred typical reverse recovery time as a typic al reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(ic) t rr = f(r gon ) at at t j = 25 / 125 c t j = 25/ 125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 41 a r g on = 8 v ge = 15 v neutral point igbt and half bridge fred boost t doff t f t don t r 0,001 0,0 1 0,1 1 0 20 40 60 80 i c (a) t ( m s) t doff t f t don t r 0,001 0, 0 1 0,1 1 0 8 16 24 32 40 r g ( w ww w ) t ( m s) t rr high t t rr low t 0 0,1 0 ,2 0,3 0,4 0,5 0,6 0 8 16 24 32 40 r gon (w) t rr (ms) t rr high t t rr low t 0 0,0 4 0,08 0,12 0,16 0,2 0 20 40 60 80 i c (a) t rr (ms) copyright by vincotech 14 revision: 4
10-FZ12NMA080SH-M269F datasheet figure 13 fred figure 14 fred typical reverse recovery charge as a typic al reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c ) q rr = f(r gon ) at at a t t j = 25 / 125 c t j = 25/ 125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 41 a r g on = 8 v ge = 15 v figure 15 fred fi gure 16 fred typical reverse recovery current as a typic al reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c ) i rrm = f(r gon ) at at t j = 25 / 125 c t j = 25/ 125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 41 a r g on = 8 v ge = 15 v neutral point igbt and half bridge fred boost i rrm high t i rrm low t 0 30 60 9 0 120 150 0 8 16 24 32 40 r gon (w) i rrm (a) q rr high t q rr low t 0 2 4 6 8 0 8 16 24 32 40 r g on ( w ) q rr (mc) i rrm high t i rrm low t 0 20 40 6 0 80 100 0 20 40 60 80 i c (a) i rrm (a) q rr high t q rr low t 0 2 4 6 8 10 0 2 0 4 0 60 80 i c (a) q rr (mc) copyright by vincotech 15 revision: 4
10-FZ12NMA080SH-M269F datasheet figure 17 fred figure 18 fred typical rate of fall of forward typic al rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(ic) di 0 /d t,di rec /dt = f(r gon ) at at t j = 25 / 125 c t j = 25/ 125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 41 a r g on = 8 v ge = 15 v figure 19 igbt fi gure 20 fred igbt transient thermal impedance fred transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at at d = tp / t d = tp / t r thjh = 1, 3 0 k/w r thjh = 1,5 5 k/w igbt thermal model values fred thermal model values r (c/w) tau (s) r (c/w) tau (s) 0,04 9,0e+00 0,06 3,9e+00 0,17 1,1e+00 0,30 3,8e-01 0,62 1,7e-01 0,77 7,8e-02 0,31 3,9e-02 0,28 1,2e-02 0,12 6,7e-03 0,14 1,2e-03 0,06 4,1e-04 boost neutral point igbt a n d half bridge fred t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di 0 /dt high t di rec /dt high t di 0 /dt low t di rec /dt low t 0 400 0 8000 12000 16000 20000 0 8 16 24 32 40 r gon (w) di rec / dt (a/ms) di 0 /dt high t di rec /dt high t di rec /dt low t di o /dt low t 0 200 0 4000 6000 8000 10000 0 20 40 60 80 i c (a) di rec / dt (a/ms) copyright by vincotech 16 revision: 4
10-FZ12NMA080SH-M269F datasheet figure 21 igbt figure 22 igbt power dissipation as a colle ctor current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 17 5 oc t j = 175 oc v ge = 15 v fi gure 23 fred fi gure 24 fred power dissipation as a forwa rd current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at at t j = 15 0 oc t j = 150 oc boost neutral point igbt a n d half bridge fred 0 25 50 75 100 125 150 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 50 60 70 0 50 100 150 200 t h ( o c) i c (a) 0 20 40 60 80 100 120 0 50 100 150 200 th ( o c) p tot (w) 0 10 20 30 40 50 0 50 100 150 200 th ( o c) i f (a) copyright by vincotech 17 revision: 4
10-FZ12NMA080SH-M269F datasheet figure 1 thermistor figure 2 thermistor typical ntc characteristic typic al ntc resistance values as a function of temperature r t = f(t) thermistor ntc-typical temperature characteristic 0 50 0 0 10000 15000 20000 25000 25 50 75 100 125 t (c) r/  [ ] w = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - 25 100/25 11 25 )( tt b ertr copyright by vincotech 18 revision: 4
10-FZ12NMA080SH-M269F datasheet t j 125 c r gon 8  r goff 8  figure 1 half bridge igbt figure 2 half bridge igbt turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of t don , t eon (t eoff = integrating time for e off ) (t eon = integrating time for e on ) v ge (0%) = -1 5 v v ge (0%) = -15 v v ge (100%) = 15 v v g e (100%) = 15 v v c (100%) = 700 v v c (100%) = 700 v i c (100%) = 40 a i c (100%) = 40 a t d off = 0,2 8 s t don = 0,1 3 s t eoff = 0,6 3 s t eon = 0,2 3 s figure 3 half bridge igbt figure 4 half bridge igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 700 v v c (100%) = 700 v i c (100%) = 40 a i c (100%) = 40 a t f = 0,0 7 s t r = 0,0 2 s switching definitions buck igbt general conditions = = = i c 1% v ce 90% v ge 90% -50 0 50 10 0 150 -0,2 -0,05 0,1 0,25 0,4 0,55 0,7 time (us) % t doff t eoff v ce i c v ge i c10% v ge10% t don v ce 3% -50 0 50 10 0 150 200 250 2,3 2,4 2,5 2,6 2,7 2,8 2,9 3 time(us) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -50 0 50 10 0 150 0,15 0,2 0,25 0,3 0,35 0,4 time (us) % v ce i c t f i c10% i c90% -50 0 50 10 0 150 200 250 2,4 2,5 2,6 2,7 2,8 2,9 time(us) % tr v ce ic copyright by vincotech 19 r evision: 4
10-FZ12NMA080SH-M269F datasheet figure 5 half bridge igbt figure 6 half bridge igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 28, 05 kw p on (100%) = 28, 05 kw e off (100%) = 1,6 5 mj e on (100%) = 0,7 0 mj t eoff = 0,6 3 s t eon = 0,2 3 s figure 7 half bridge igbt figure 8 half bridge igbt gate voltage vs gate charge (measured) turn-of f switching waveforms & definition of t rr v geoff = -15 v v d (100%) = 700 v v geon = 15 v i d (100%) = 40 a v c (100%) = 700 v i rrm (100%) = -43 a i c (100%) = 40 a t r r = 0,0 4 s q g = 155 6,37 nc switching definitions buck igbt i c 1% v ge90% -20 0 20 40 6 0 80 100 120 -0,1 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 time (us) % p off e off t eoff v ce3% v ge10% -20 10 40 7 0 100 130 160 2,45 2,5 2,55 2,6 2,65 2,7 2,75 2,8 2,85 time(us) % p on e on t eon -20 -15 -10 -5 0 5 10 15 20 -100 0 100 200 300 400 500 600 700 qg (nc) v ge (v) i rrm 10% i rrm 90% i rrm 100% t rr -150 -10 0 -50 0 50 100 150 2,62 2,64 2,66 2,68 2,7 2,72 2,74 time(us) % i d v d fitted copyright by vincotech 20 r evision: 4
10-FZ12NMA080SH-M269F datasheet figure 9 neutral point fred figure 10 neutral point fred turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) (t erec = integrating time for e rec ) i d (100%) = 40 a p r ec (100%) = 28, 05 kw q rr (100%) = 0,9 5 c e rec (100%) = 0,1 2 mj t qrr = 0,0 8 s t erec = 0,0 8 s figure 11 buck stage switching measurement circuit measurement circuit swi tching definitions buck igbt t qrr -150 -1 0 0 -50 0 50 100 150 2,62 2,64 2,66 2,68 2,7 2,72 2,74 2,76 time(us) % i d q rr -20 0 20 40 60 80 100 120 2,62 2,64 2,66 2,68 2,7 2,72 2,74 2,76 time(us) % p rec e rec t erec copyright by vincotech 21 revision: 4
10-FZ12NMA080SH-M269F datasheet t j 125 c r gon 8  r goff 8  figure 1 neut ral point igbt figure 2 neutral point igbt turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of t don , t eon (t eoff = integrating time for e off ) (t eon = integrating time for e on ) v ge (0%) = -1 5 v v ge (0%) = -15 v v ge (100%) = 15 v v g e (100%) = 15 v v c (100%) = 350 v v c (100%) = 350 v i c (100%) = 40 a i c (100%) = 40 a t d off = 0,2 1 s t don = 0,1 0 s t eoff = 0,4 0 s t eon = 0,2 0 s figure 3 neut ral point igbt figure 4 neutral point igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 350 v v c (100%) = 350 v i c (100%) = 40 a i c (100%) = 40 a t f = 0,0 99 s t r = 0,0 13 s switching definitions boost igbt general conditions = = = ic10% vge10% tdon vce3% -50 0 50 10 0 150 200 250 300 2,95 2,99 3,03 3,07 3,11 3,15 3,19 3,23 3,27 time(us) % ic v ce t eon v ge ic 1% vce 90% vge 90% -20 0 20 40 6 0 80 100 120 140 -0,2 -0,1 0 0,1 0,2 0,3 0,4 0,5 time (us) % tdoff teoff vce ic vge fitted ic10% ic 90% ic 60% ic 40% -20 0 20 40 6 0 80 100 120 140 -0,10 0,00 0,10 0,20 0,30 0,40 0,50 time (us) % v ce ic tf ic10% ic90% -50 0 50 10 0 150 200 250 300 350 3,01 3,06 3,11 3,16 3,21 3,26 time(us) % tr vce ic copyright by vincotech 22 revision: 4
10-FZ12NMA080SH-M269F datasheet figure 5 neutral point igbt figure 6 neutral point igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 13, 96 kw p on (100%) = 13, 9552 kw e off (100%) = 1,5 0 mj e on (100%) = 0,7 2 mj t eoff = 0,4 0 s t eon = 0,2 025 s figure 7 neut ral point igbt figure 8 half bridge fred gate voltage vs gate charge (measured) turn-of f switching waveforms & definition of t rr v geoff = -15 v v d (100%) = 350 v v geon = 15 v i d (100%) = 40 a v c (100%) = 350 v i rrm (100%) = -79 a i c (100%) = 40 a t r r = 0,1 7 s q g = 464 ,74 nc switching definitions boost igbt ic 1% uge90% -20 0 20 40 6 0 80 100 120 -0,2 -0,1 0 0,1 0,2 0,3 0,4 0,5 0,6 time (us) % poff eoff teoff uce3% uge10% -20 0 20 40 6 0 80 100 120 140 160 2,95 3 3,05 3,1 3,15 3,2 3,25 3,3 3,35 3,4 time(us) % pon eon teon -20 -15 -10 -5 0 5 10 15 20 -50 0 50 100 150 200 250 300 350 400 450 500 qg (nc) uge (v) irrm10% irrm90% irrm100% trr -200 -15 0 -100 -50 0 50 100 150 3,03 3,08 3,13 3,18 3,23 3,28 3,33 time(us) % i d u d fitted copyright by vincotech 23 revision: 4
10-FZ12NMA080SH-M269F datasheet figure 9 half bridge fred figure 10 half bridge fred turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) (t er ec = integrating time for e rec ) i d (100%) = 40 a p r ec (100%) = 13, 96 kw q rr (100%) = 6,1 4 c e rec (100%) = 1,7 9 mj t qint = 1,0 0 s t erec = 1,0 0 s figure 11 boost stage switching measurement circuit measurement circuit swi tching definitions boost igbt tqint -200 -1 0 0 0 100 200 3 3,5 4 4,5 time(us) % id q rr 0 20 40 60 80 100 120 3 3,5 4 4,5 time(us) % prec erec terec copyright by vincotech 24 revision: 4
10-FZ12NMA080SH-M269F datasheet version ordering code in datamatrix as in packaging barcode as w/o thermal paste 12mm housing solder pin 10-fz06nma080sh-m269f m269f m269f outline pinout ordering code & marking ordering code and marking - outline - pinout copyright by vincotech 25 revision: 4
10-FZ12NMA080SH-M269F datasheet disclaimer life support policy as used herein: the information given in this datasheet describes the type of component and does not represent assured characteristics. for tested values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright by vincotech 26 revision: 4


▲Up To Search▲   

 
Price & Availability of 10-FZ12NMA080SH-M269F

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X